Industrial AC Machines

(Code: 22523)

Maharashtra State Board of Technical Education (MSBTE)

Semester V – Electrical Engineering Group (EE/EP/EU)

Strictly as per new revised 'I' Scheme w.e.f. academic year 2019-2020

J. S. Katre

M.E. (Electronics and Telecommunication) Formerly, Assistant Professor Department of Electronics Engineering Vishwakarma Institute of Technology (V.I.T.), Pune. Maharashtra, India

Industrial AC Machines (Code : 22523)
Third Year Diploma : Semester V (MSBTE), [Electrical Engineering Group (EE/EP/EU)]
J. S. Katre
Copyright © by Author. All rights reserved. No part of this publication may be reproduced, copied, or stored in a
retrieval system, distributed or transmitted in any form or by any means, including photocopy, recording, or

other electronic or mechanical methods, without the prior written permission of the publisher.

This book is sold subject to the condition that it shall not, by the way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior written consent in any form of binding or cover other than which it is published and without a similar condition including this condition being imposed on the subsequent purchaser and without limiting the rights under copyright reserved above.

First Printed in India	: June 2008
First Edition as per I-Scheme	: June 2019 (TechKnowledge Publications)
Second Revised Edition	: August 2021
Third Revised Edition	: June 2022

This edition is for sale in India, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka and designated countries in South-East Asia. Sale and purchase of this book outside of these countries is unauthorized by the publisher.

ISBN: 978-93-89233-61-2

Published by :

TechKnowledge Publications

Head Office : B/5, First floor, Maniratna Complex, Taware Colony, Aranyeshwar Corner,

Pune - 411 009. Maharashtra State, India

Ph: 91-20-24221234, 91-20-24225678.

Email : info@techknowledgebooks.com,

Website : www.techknowledgebooks.com

[22523] (FID : MDO65) (Book Code : MDO65C)

We dedicate this Publication soulfully and wholeheartedly, in loving memory of our beloved founder director, **Late Shri. Pradeepji Lalchandji Lunawat**, who will always be an inspiration, a positive force and strong support behind us.

"My work is my prayer to God" – Lt. Shri. Pradeepji L. Lunawat

Soulful Tribute and Gratitude for all Your Sacrifices, Hardwork and 40 years of Strong Vision...

	Syllabus
	Industrial AC Machines : Sem. V (Electrical Engineering Group (MSBTE))
	Unit-I
1.	Three Phase Induction Motor :
^{1.}	
	Working principle : Production of rotating magnetic field, Synchronous speed, Rotor speed and slip, Constructional
	details of 3 phase induction motors : Squirrel cage induction motor and slip ring induction motor. Rotor quantities :
	Frequency, Induced emf, Power factor at starting and running condition, Characteristics of torque versus slip (Speed),
	Torques : Starting, Full load and maximum with relations among them. Induction motor as a generalized transformer
	with phasor diagram, Four quandrant operation, Power flow diagram, Starters : Need and types : Stator resistance,
	Auto transformer, Start delta, Rotor resistance and soft starters, Speed control methods : Stator voltage, Pole
	changing, Rotor resistance and VVVF. Motor selection for different applications as per the load torque speed requirements, Maintenance of three phase induction motors. (Refer Chapter 1)
	Unit-II
2.	Single Phase Induction Motors :
	Double field revolving theory, Principle of making these motors self start, Construction and working : Resistance start
	induction run, Capacitor start induction run, Capacitor start capacitor run, Shaded pole, Repulsion type, Series motor,
	Universal motor, Hysteresis motor. Torque-speed characteristics for all of the above motors, Motor selection for
	different applications as per the load torque speed requirements, Maintenance of single phase induction motors.
	(Refer Chapter 2)
	Unit-III
3.	Three Phase Alternators :
	Principle of working, Moving and stationary armatures, Constructional details : Parts and their functions, Rotor
	Constructions, Windings : Single and double layer, E.M.F. equation of Alternator with numerical by considering short
	pitch factor and distribution factor. Alternator loading : Factors affecting the terminal voltage of alternator ;
	Armature resistance and leakage reactance drops, Armature reaction at various power factors and synchronous
	impedance, voltage regulation ; direct loading and synchronous impedance methods, maintenance of alternators.
	(Refer Chapter 3)
	Unit-IV
4.	Synchronous Motors :
	Principle of working / Operation, Significance of load angle, Torques : Starting torque, Running torque, Pull in
	torque, Pull out torque, Synchronous motor on load with constant excitation (numerical), Effect of excitation at
	constant load (numerical). V-Curves and Inverted V-Curves, Hunting and phase swinging. Methods of starting of
	synchronous motor, Losses in synchronous motors and efficiency (no numericals), Applications areas.

(Refer Chapter 4)

Unit-V 5. Fractional Horse Power Motors (FHP) : Construction and working : Synchronous Reluctance motor, Switched reluctance motor, BLDC, Permanent magnet synchronous motors, Stepper motors, AC and DC servomotors, Torque speed characteristics of above motors, Applications of above motors. (Refer Chapter 5)

¥	Table of	Contents	1	Indu	strial AC Machines (Electrical/Sem. 5/MSBT
		Unit-I	1.5	Princip	le of Operation1-1
Chap	oter 1 : T	hree Phase Induction Motor 1-1 to 1-74		1.5.1	Direction of Rotation1-1
Sylla	bus: \	Norking principle : Production of rotating		1.5.2	Why an I.M. can Never Run at N _S ?1-1
magr	netic field	d, Synchronous speed, Rotor speed and slip.	1.6	Effect o	of Loading on Induction Motor1-1
Cons	tructiona	I details of three phase induction motor :	1.7	Electric	al Characteristics of Induction Motors1-1
		and slip-ring induction motor, Rotor quantities Induced emf, Power factor at starting and		1.7.1	Synchronous Speed (Ns)1-1
		lition, Characteristics of torque versus slip		1.7.2	Slip s1-1
(spee	ed),Torqu	ies : Starting, Full load and maximum with		1.7.3	Frequency of Rotor Induced
relatio	ons amo	ong them. Induction motor as a generalized			emf (f _r) (Slip Frequency)1-1
		ith phasor diagram, Four quadrant operation, diagram, Starters : Need and types, Stator		1.7.4	Induced Voltage in the Rotor1-1
		uto transformer, Star-Delta, Rotor resistance		1.7.5	Rotor Resistance (R ₂)1-1
and s	soft start	ers, Speed control methods : Stator voltage,		1.7.6	Rotor Reactance(X ₂)1-1
Pole changing, Rotor resistance and VVVF. Motor selection				1.7.7	Rotor Impedance1-1
		applications as per the load torque speed Maintenance of three phase induction motors.		1.7.8	Rotor Power Factor1-1
1.1		uction		1.7.9	Rotor Current1-1
	1.1.1	Advantages of Induction Motors		1.7.10	Power Transferred1-1
		over DC Motors1-2	1.8	Torque	e Equation of Induction Motor1-1
	1.1.2	Disadvantages of Induction Motors1-2		1.8.1	Full Load Torque1-1
	1.1.3	Applications of Induction Motor1-2		1.8.2	Starting Torque1-1
1.2	Rotatir	ng Magnetic Field (RMF)1-2		1.8.3	Condition for Maximum Torque1-1
	1.2.1	Production of RMF1-3		1.8.4	Expression For Maximum
	1.2.2	Direction of RMF1-5			Torque [T _m]1-2
1.3			1.9	Torque	e Slip Characteristics of Induction Motor1-2
	1.3.1	Induction Motor Parts and		1.9.1	Analysis of the Torque-Slip
		their Functions1-7			Characteristics1-2
1.4	Types	of Induction Motor1-7		1.9.2	Pull Out Torque or Breakdown
	1.4.1	Wound Rotor or Slip Ring Type Rotor1-8			Torque1-2
	1.4.2	Squirrel Cage Rotor1-8		1.9.3	Other Regions of Operation1-2
	1.4.3	Comparison of Two Types of Rotor	1.10	Variou	s Torque Ratios for an Induction Motor1-2
			I		

	Principl	e of Operation1-10
	1.5.1	Direction of Rotation1-11
	1.5.2	Why an I.M. can Never Run at $N_{\text{S}}?1\text{-}11$
	Effect o	f Loading on Induction Motor1-11
	Electrica	al Characteristics of Induction Motors1-12
	1.7.1	Synchronous Speed (N_{S})1-12
	1.7.2	Slip s1-12
	1.7.3	Frequency of Rotor Induced emf (fr) (Slip Frequency)1-12
	1.7.4	Induced Voltage in the Rotor
	1.7.5	Rotor Resistance (R ₂)
	1.7.6	Rotor Reactance(X ₂)
	1.7.7	Rotor Impedance
	1.7.8	Rotor Power Factor1-14
	1.7.9	Rotor Current1-14
	1.7.10	Power Transferred1-14
	Torque	Equation of Induction Motor1-18
	1.8.1	Full Load Torque1-19
	1.8.2	Starting Torque1-19
	1.8.3	Condition for Maximum Torque1-19
	1.8.4	Expression For Maximum Torque [T _m]1-20
	Torque	Slip Characteristics of Induction Motor1-20
	1.9.1	Analysis of the Torque-Slip Characteristics1-21
	1.9.2	Pull Out Torque or Breakdown Torque1-22
	1.9.3	Other Regions of Operation1-22
)	Various	Torque Ratios for an Induction Motor1-23

Table of Contents				
	1.10.1	Starting Torque to Maximum		
		Torque Ratio1-23		
	1.10.2	Ratio of Full Load Torque and		
		Maximum Torque1-23		
1.11		of Change in Rotor Resistance que1-34		
1.12		of Change in Supply Voltage on Slip Characteristics1-34		
	1.12.1	Effect of Change in Supply Frequency1-35		
1.13	Two / F	our Quadrant Operation1-35		
	1.13.1	Two Quadrant Operation of		
		Induction Motor1-35		
	1.13.2	Four Quadrant Operation of		
		Induction Motor1-36		
1.14	Losses	in Induction Motor1-37		
	1.14.1	Variable Losses1-37		
	1.14.2	Constant Losses1-37		
1.15	Power Flow Diagram (Power Stages)			
	for Induction Motor1-37			
1.16		cy of an Induction Motor1-39		
1.17		on Motor as a Transformer1-51		
1.18	Equival	ent Circuit of Induction Motor1-52		
	1.18.1	Equivalent Circuit Referred to Stator1-52		
	1.18.2	Approximate Equivalent Circuit1-53		
1.19	Vector	Diagram of Induction Motor1-53		
1.20	Need c	f Starter for Induction Motor1-54		
	1.20.1	Types of Starters1-55		
	1.20.2	Stator Resistance Starter1-55		
	1.20.3	Autotransformer Starter1-56		
	1.20.4	Star-Delta Starter1-57		
	1.20.5	Rotor Resistance Starter1-58		

	1.20.6	Soft Starting1-59
	1.20.7	Direct On Line (DOL) Starter1-60
	1.20.8	Comparison of Different Starters1-61
1.21	Speed	Control of Three Phase
	Inducti	on Motors1-61
	1.21.1	Stator Voltage Control1-62
	1.21.2	Stator Frequency Control or V/f or VVVF Control1-63
	1.21.3	Pole Changing1-65
	1.21.4	Speed Control using External Rotor
		Resistance1-65
1.22	Reversa	al of Direction of Rotation1-66
1.23	Applica	tions of Induction Motors1-66
	1.23.1	Applications of Squirrel Cage Motors1-66
	1.23.2	Applications of Slipring
		Induction Motors1-67
	1.23.3	Comparison of I.M. and DC Motors1-67
1.24	Mainte	nance of a 3 Phase Induction Motor1-67
	1.24.1	Preventive Maintenance1-68
1.25	Motor	Selection for Different Applications
	as per t	the Load Torque Requirements1-69
1.26	MSBTE	Questions and Answers1-72
1.27	I-Scher	ne Questions and Answers1-74
	•	R
		eview Questions1-71
		Unit-II

Industrial AC Machines (Electrical/Sem. 5/MSBTE)

Chapter 2 : Single Phase Induction Motors 2-1 to 2-24

Syllabus : Double field revolving theory, Principle of making these motors self start, Construction and working : Resistance start induction run, Capacitor start induction run, Capacitor start capacitor run, Shaded pole, Repulsion type, Series motor, Universal motor, Hysteresis motor, Torque – Speed characteristics for all of the above motors, Motor selection for different applications as per the load torque

÷	Table of	Contents 3	3
requii motoi		Maintenance of single phase induction	
2.1	Introdu	uction 2-2	
2.2	Single	Phase Induction Motors2-2	
	2.2.1	Construction of Single Phase Induction Motors	
	2.2.2	Double Revolving Field Theory2-2	
	2.2.3	Torque Speed Characteristics of Single Phase Induction Motor	2.7
	2.2.4	Split Phasing Principle of Starting2-4	
	2.2.5	Types of Single Phase Induction Motors2-4	2.8
2.3		hase I.M. (Resistance Start on Run)	
	2.3.1	Principle of Operation2-5	
	2.3.2	Phasor Diagram2-5	
	2.3.3	Torque Speed Characteristics	2.9
	2.3.4	Applications of Split Phase Induction Motor	
	2.3.5	Possible Reasons for Slow Speed2-6	
2.4	Capaci	tor Start Induction Run Motors	
	2.4.1	Phasor Diagram2-7	
	2.4.2	Torque Speed Characteristics	
2.5	Capaci	tor Start Capacitor Run Motor	2.:
	2.5.1	Phasor Diagram2-9	2.3
	2.5.2	Role of Capacitor2-9	
	2.5.3	Advantages and Disadvantages	
	2.5.4	Torque Speed Characteristics	
	2.5.5	Applications2-9	
2.6	Shadeo	d Pole Induction Motors2-10	

	Indus	strial AC Machines (Electrical/Sem. 5/MSBTE)
	2.6.1	Advantages2-11
	2.6.2	Disadvantages2-11
	2.6.3	Applications2-11
	2.6.4	Comparison of Polyphase I.M. and
		Single Phase I.M2-11
	2.6.5	Comparison of Resistance Split Phase
		Motor and Capacitor Split Phase
		Motor2-11
2.7	Repulsion	on Motors2-12
	2.7.1	Repulsion Motor2-12
2.8	Single F	Phase A.C. Series Motors2-13
	2.8.1	Modifications2-14
	2.8.2	Construction of AC Series Motor2-15
	2.8.3	Torque-Speed Characteristics2-15
	2.8.4	Applications2-16
2.9	Univers	al Motor2-16
	2.9.1	Uncompensated Universal Motor2-16
	2.9.2	Compensated Universal Motor2-17
	2.9.3	Advantages of Universal Motors2-18
	2.9.4	Disadvantages of Universal Motors2-18
	2.9.5	Speed Range and Direction Reversal2-18
	2.9.6	Applications of Universal Motors2-18
2.10	Hystere	sis Motor2-18
2.11	Motor Selection for Different Applications	
	as per t	he Load Torque Requirements2-20
	2.11.1	Speed-Torque Characteristics of
		DC Shunt Motor2-20
	2.11.2	Speed-Torque Characteristics of
		DC Series Motor2-20

¥	Table of	Contents	4
	2.11.3	Torque Speed Characteristics of DC Compound Motors2-21	
	2.11.4	Torque-Slip Characteristics of Induction Motor2-21	
	2.11.5	Torque Speed Characteristics of Synchronous Motor2-21	
2.12	Differe	nt Applications and Motors2-21	
	2.12.1	Rolling Mills2-21	
	2.12.2	Shear Press and Mechanical Press2-21	
	2.12.3	Cranes, Winches, Hoists2-21	
	2.12.4	Traction2-22	
	2.12.5	Textile Industry2-22	
	2.12.6	Coal and Mining Industry2-22	
2.13	Motors	and their Applications with Reasons2-22	
2.14	Mainte	nance of a Single Phase Induction	
	Motor	2-22	
	2.14.1	Preventive Maintenance2-23	
2.15	MSBTE	Questions and Answers2-24	
2.16	I-Scher	ne Questions and Answers2-24	
	•	eview Questions R	2
		Unit-III	
Chap	ter 3 : Tł	nree Phase Alternators 3-1 to 3-51	
armat Rotor E.M.F short Facto	ures, Co constru : equatio pitch fac rs affecti	Principle of working : Moving and stationary nstructional details : Parts and their functions. ctions : Windings; Single and double layer. on of alternator with numerical by considering tor and distribution factor, Alternator loading : ng the terminal voltage of alternator, Armature d leakage reactance drops, Armature reaction	

Voltag	je regu	ower factors and synchronous impedance, lation : Direct loading and synchronous othods, Maintenance of alternator.
3.1	Introdu	action to Alternators3-2
3.2	Classifi	cation of Alternators3-2
3.3	Constru	uction of an Alternator3-3
	3.3.1	Stator Construction3-3
	3.3.2	Construction of a Rotor : (Types of
		Alternators According to
		Types of Rotors)3-4
	3.3.3	Comparison of Salient Pole and
		Smooth Cylindrical Rotor3-5
	3.3.4	Excitation System3-6
	3.3.5	Ventilation System3-6
	3.3.6	Slip Ring and Brush Assembly3-6
3.4		ages of Rotating Field Construction e Rotating Armature Construction
3.5	Princip	le of Operation3-8
	3.5.1	Moving Armature Type3-8
	3.5.2	Stationary Armature Type3-8
3.6	Induce	d (Generated) EMF3-9
	3.6.1	Frequency of Induced EMF3-9
	3.6.2	Synchronous Speed
		(Relation between N_{S} and f)3-9
3.7	Derivat	ion of the Relation between N_{S} and f3-10
3.8	Armatu	re Windings3-10
3.9	Armatu	re Winding and Related Definitions3-10
3.10	Types o	of Armature Windings3-11
	3.10.1	Single Layer and Double Layer Winding3-11
	3.10.2	Concentric or Distributed Windings3-11
	3.10.3	Full Pitch and Short Pitch Winding

Industrial AC Machines (Electrical/Sem. 5/MSBTE)

Tech Knowledg[™] Publications

¥	Table of (Contents		
	3.10.4	Pitch Factor or Coil Span Factor (K _c or K _p)3-14		
	3.10.5	Distribution Factor or Breadth Factor or		
3.11	ЕМЕ Б	Winding Factor or Spread Factor (K _d)3-15 equation of an Alternator		
3.12		eters of Armature Winding		
	3.12.1	-		
	3.12.2	Armature Leakage Reactance X_L		
3.13	Armatu	re Reaction at Various Power Factors3-24		
	3.13.1	Effect of Lagging Power Factor Load3-24		
	3.13.2	Effect of Unity Power Factor Load3-25		
	3.13.3	Effect of Zero Leading Power Factor3-25		
3.14	-	onous Reactance (X _s) and Synchronous ance (Z _s)3-26		
3.15	Equival	ent Circuit of an Alternator		
3.16	Voltage	Voltage Equation and Factors Affecting the		
	Termina	al Voltage3-28		
3.17	Voltage	e Regulation of an Alternator		
	3.17.1	Regulation by Direct		
		Loading Method3-29		
	3.17.2	Indirect Methods to Find Regulation3-30		
3.18	Regulat	tion of an Alternator by Synchronous		
	Impeda	nce Method3-31		
	3.18.1	Open Circuit Test3-31		
	3.18.2	Short Circuit Test3-32		
	3.18.3	To Obtain Synchronous Impedance Z _s 3-33		
	3.18.4	Regulation Calculations3-33		
	3.18.5	Phasor Diagrams and Regulation		
		Calculation3-34		
	3.18.6	Precautions in OC and SC Tests3-35		

	Industrial AC Machines (Electrical/Sem. 5/MSI	BTE)
3.19	Rating of an Alternator	3-47
3.20	Losses and Efficiency	3-47
3.21	Maintenance of an Alternator	3-48
3.22	MSBTE Questions and Answers	3-49
3.23	I-Scheme Questions and Answers	3-51
	•	R
	eview Questions	8-49
	Unit-IV	

Chapter 4 : Synchronous Motors

5

4-1 to 4-21

Syllabus : Principle of working / operation, Significance of load angle. Torques : Starting torque, Running torque, Pull in torque, Pull out torque, Synchronous motor on load with constant excitation (numerical), Effect of excitation at constant load (numerical), V-curves and inverted V-curves, Hunting and phase swinging, Methods of starting of synchronous motor, Losses in synchronous motors and efficiency (no numericals), Applications areas.

4.1 Synchronous Motors......4-2 Important Characteristics of Synchronous 4.1.1 Motors4-2 4.2 Construction of Three Phase Synchronous Motor 4.3 Rotating Magnetic Field (RMF)4-2 Types of Synchronous Motors4-2 4.4 4.5 Principle of Operation4-3 Why Synchronous Motor is not 4.5.1 Self Starting ?......4-4 Effect of Variation of Load4-4 4.6 4.6.1 Back Emf4-4 4.6.2 Synchronous Impedance Zs4-5

Table of Contents 6			
	4.6.3	Power Developed by a Synchronous Motor4-5	4.1
4.7	Ideal S	ynchronous Motor on No Load4-6	
	4.7.1	Synchronous Motor on No Load (With Losses)4-6	4.10
	4.7.2	Synchronous Motor on Load4-7	
	4.7.3	Torque Angle Characteristics4-7	
4.8	Differe	nt Torques of a Synchronous Motor4-8	4.1
4.9	Starting	g Methods for a Synchronous Motor4-8	
	4.9.1	Using a Small DC Machine4-8	
	4.9.2	Using a Small Induction Motor4-8	
	4.9.3	Using the Damper Winding4-9	
4.10		nt Operating Conditions for a onous Motor4-9	4.18
4.11		ete Phasor Diagram Under Normal 1g Condition4-9	4.19
4.12	Effect o	of Change in Excitation at	
	Consta	nt Load4-10	
	4.12.1	Phasor Diagram for Normal Excitation4-10	Cha
	4.12.2	Phasor Diagram for Under Excitation4-10	
	4.12.3	Phasor Diagram for the Over Excitation4-11	Syl relu
	4.12.4	Phasor Diagram for Critical Excitation4-11	
4.13	V - Cur	ves and Inverted V - Curves4-11	DC
	4.13.1	V Curves4-12	
	4.13.2	Inverted V Curve4-12	5.1 5.2
	4.13.3	Set up to Plot the V-curves and	5.2
		Inverted V-curves4-12	5.3
4.14	Power	Flow within a Synchronous Motor4-13	

		Unit-V	
		eview Questions	4-19
	•		R
.19	I-Schen	ne Questions and Answers	4-21
	4.18.1	Examples on Synchronous Motor	4-16
	Motor a	and 3 Phase Synchronous Motor	4-16
.18	Compa	rison between 3 Phase Induction	
	4.17.3	Disadvantages	4-16
	4.17.2	Advantages	4-16
	4.17.1	Applications	4-15
	Disadva	antages of Synchronous Motor	4-15
.17	Applica	tions, Advantages and	
		Motor While Hunting	4-15
	4.16.2	Phasor Diagram of Synchronous	
	4.16.1	Effects of Hunting	4-15
.16	Hunting	g in Synchronous Motor	4-14
		Synchronous Condenser	4-14
	4.15.1	Power Factor Correction using	
.15	Synchro	onous Condenser	4-13

Industrial AC Machines (Electrical/Sem. 5/MSBTE)

Chapter 5 : Fractional Horse Power Motors (FHP)		
	5-1 to 5-22	
Syllabus : Construction and working: S	synchronous	
reluctance motor, Switched reluctance mo	tor, BLDC,	
Permanent magnet synchronous motors, Stepper motors,		
DC and AC servomotors, Torque speed characteristics of		
above motors, Applications of above motors.		
5.1 Introduction	5-2	
5.2 Single Phase Synchronous Motors	5-2	
5.2.1 Synchronous Reluctance Motor	5-2	
5.3 Switched Reluctance Motor (SRM)	5-3	
5.3.1 Advantages	5-5	

Yech Knowledge Publications

¥	Table of	Contents	7
	5.3.2	Disadvantages5-5	Î
	5.3.3	Applications5-5	
5.4	Brushle	ess DC Motor (BLDC Motor)	
	5.4.1	Advantages of BLDC Motor Over DC Motor	
	5.4.2	Types of BLDC Motor5-6	
	5.4.3	Unipolar (Half Wave) BLDC Motor5-6	
	5.4.4	Principle of Operation5-7	
	5.4.5	A Bipolar (Full Wave) BLDC Motor5-8	
	5.4.6	Torque-Speed Characteristics of BLDC Motor	
	5.4.7	Advantage, Disadvantages and Applications5-9	
5.5	Permar	nent Magnet Synchronous Motor5-10	
5.6	Servor	Servomotors5-11	
	5.6.1	A.C. Servomotor5-11	
	5.6.2	Torque Speed Characteristics5-12	
	5.6.3	Advantages of AC Servomotors5-12	
	5.6.4	Applications of AC Servomotors5-13	
5.7	DC Ser	vomotors5-13	
	5.7.1	Field Controlled DC Servomotor5-13	
	5.7.2	Armature Controlled DC Servomotor5-13	
	5.7.3	Applications of DC Servomotor5-14	

	Indus	strial AC Machines (Electrical/Sem. 5/MSBTE)
	5.7.4	Comparison of AC and DC Servomotors5-14
	5.7.5	Comparison of Armature Controlled and
		Field Controlled DC Servomotors5-14
5.8	Stepper	Motor5-15
	5.8.1	Advantages of Stepper Motors5-15
5.9	Classific	ation of Stepper Motors5-15
	5.9.1	Types of Stepper Motors5-15
5.10	Variable	e Reluctance (V.R.) Stepper Motor5-16
5.11	Perman	ent Magnet Stepper Motors5-17
	5.11.1	Comparison of V.R. Motor and P.M.
		Motor5-18
5.12	Hybrid	Step Motors5-19
5.13	Importa	ant Definitions Related to
	Stepper	Motors
5.14	Stepper	Motor Characteristics5-21
	5.14.1	Static Characteristics5-21
	5.14.2	Dynamic Characteristics5-21
	5.14.3	Limitations of Stepper Motor5-21
	5.14.4	Applications of Stepper Motor5-21
5.15	I-Schem	ne Questions and Answers5-22
	• Re	view Questions5-22

