

	Module 1	1.8.1	Alphanumeric Keyboa
Chapt	ter 1 : Computer Graphics 1-1 to 1-74	1.8.2	Cursor Control Device
		1.8.3	Digitizers
1.1	Introduction: Scope of CAD/CAM in product life cycle, CAD/CAM hardware and software, 2D and 3D	1.8.4	Scanners
	computer graphics representation, Mapping of	1.8.5	Other Input Devices .
	Geometric Models.	1.9	Output Devices
1.2	Parametric representation of curves and surfaces	1.9.1	Printers
	Synthetic Curves - Bezier curves, Hermite Curves,	1.9.2	Pen Plotters
	B-spline curves. Surface representation.	1.9.3	Hard-Copy Units (Dry
1.3	Solid Modeling : Constructive solid geometry (CSG), Boundary Representation (BRep), Wire Frame	1.9.4	Electrostatic Plotters
	Modeling, Solid Modeling, Surface Modeling,	1.9.5	Computer-Output-to-
	Parametric Modeling, Feature based modeling,	1.10	Central Processing U
	Constraint Based Modeling.	1.11	Storage Devices (Me
1.1	Scope of CAD/CAM1-2	1.11.1	Primary Storage Devi
1.2	Conventional Product Cycle1-2	1.11.2	Secondary Storage De
1.3	CAD/CAM in Product Cycle1-3	1.12	CAD/CAM Software.
1.4	Advantages, Limitations and	1.13	Functions of Graphic
	Applications of CAD/CAM1-3	1.14	Generation of Graph
1.4.1	Advantages of CAD/CAM1-3	1.15	Mapping of Geometi
1.4.2	Limitations of CAD/CAM1-4	1.16	Representation of C
1.4.3	Applications of CAD1-4	1.16.1	Representation of Cur
1.4.4	Applications of CAM1-4	1.16.2	Comparison between

1.2	Conventional Product Cycle1-2
1.3	CAD/CAM in Product Cycle1-3
1.4	Advantages, Limitations and Applications of CAD/CAM1-3
1.4.1	Advantages of CAD/CAM1-3
1.4.2	Limitations of CAD/CAM1-4
1.4.3	Applications of CAD1-4
1.4.4	Applications of CAM1-4
1.5	Hardware in Cad1-5
1.6	Graphics Display Devices1-5
1.6.1	Cathode Ray Tube (CRT)1-5
1.7	Types of Graphics Display Devices1-6
1.7.1	Random-Scan (Stroke-Writing or Vector Scan) Type Display1-6
1.7.2	Raster-Scan Display1-7
1.7.3	Liquid Crystal Display (LCD)1-9
1.7.4	Light Emitting Diode (LED) Display1-10
1.7.5	Comparison of Graphics Display Devices1-11
1.7.6	Comparison of Random Scan (Vector Scan) and Raster Scan Displays1-11
1.8	Input Devices1-12

1.8.1	Alphanumeric Keyboards1-12
1.8.2	Cursor Control Devices1-12
1.8.3	Digitizers1-14
1.8.4	Scanners1-15
1.8.5	Other Input Devices1-15
1.9	Output Devices1-15
1.9.1	Printers1-15
1.9.2	Pen Plotters1-16
1.9.3	Hard-Copy Units (Dry Silver Copiers)1-17
1.9.4	Electrostatic Plotters1-17
1.9.5	Computer-Output-to-Microfilm (COM) Units1-18
1.10	Central Processing Unit (CPU)1-18
1.11	Storage Devices (Memory Units)1-18
1.11.1	Primary Storage Devices (Main Memory)1-18
1.11.2	Secondary Storage Devices (Auxiliary Memory) .1-19
1.12	CAD/CAM Software1-19
1.13	Functions of Graphics Software1-20
1.14	Generation of Graphic Element Line1-21
1.15	Mapping of Geometric Models1-22
1.16	Representation of Curves1-22
1.16.1	Representation of Curves1-22
1.16.2	Comparison between Non-Parametric and Parametric Curves1-23
1.17	Types of Curves1-23
1.17.1	Comparison between Analytic and Synthetic Curves1-23
1.18	Synthetic Curves1-23
1.18.1	Continuity Conditions1-24
1.18.2	Approaches of Generation of Synthetic Curves1-25
1.19	Types of Synthetic Curves1-26
1.20	Hermite Cubic Splines1-26
1.21	Bezier Curves1-34
1.22	B-Spline Curves1-43

1.23	Comparison between Hermite Cubic Spline	1.32 Solid Manipulations1-6
	Curve, Bezier Curve and B-Spline Curve 1-44	1.33 Applications of Solid Modeling1-7
1.24	Surface Representation1-45	Module 2
1.25	Types of Surface Entities1-46	
1.25.1	Analytic Surfaces 1-46	Chapter 2 : Geometric Transformation 2-1 to 2-5
1.25.2	Synthetic Surfaces1-48	2.1 Homogeneous Coordinate system, Matrix
1.26	Geometric Modeling 1-49	representation, Concatenations, 2D and 3D geometric transformation (Translation, Reflection,
1.27	Methods of Geometric Modeling 1-49	Scaling, Rotation)
1.28	Wire-Frame Modeling1-49	2.1 Two-Dimensional Geometric
1.28.1	Types of Wire-Frame Modeling1-50	Transformations2-
1.28.2	Advantages of Wire-Frame Modeling1-50	2.1.1 Translation2-
1.28.3	Limitations of Wire-Frame Modeling1-50	2.1.2 Rotation2-
1.29	Surface Modeling 1-51	2.1.3 Scaling2-
1.29.1	Advantages of Surface Modeling1-51	2.1.4 Reflection2-
1.29.2	Limitations of Surface Modeling1-52	2.1.5 Shear2-
1.30	Solid Modeling 1-52	2.1.6 Concatenated (Composite) Transformations 2-
1.30.1	Comparison between Wire Frame	2.2 Two-Dimensional Geometric
	Modeling and Solid Modeling1-52	Transformations Using Homogenous
1.30.2	Geometry and Topology1-53	Coordinates2-
1.30.3	Advantages of Solid Modeling1-53	2.2.1 Translation2-
1.30.4	Limitations of Solid Modeling1-54	2.2.2 Rotation2-
1.30.5	Solid Entities (Primitives) 1-54	2.2.3 Scaling2-
1.30.6	Mathematical Representation of Solid	2.2.4 Reflection2-1
	Entities (Primitives) and their Surfaces 1-55	2.1.5 Shear2-1
1.31	Methods of Solid Modeling1-56	2.3 Two-Dimensional Inverse
1.31.1	Constructive Solid Geometry (CSG or C-REP) 1-56	Transformations2-1
1.31.2	Boundary Representation (B-REP)1-58	2.3.1 Inverse Translation2-1
1.31.3	Sweeping1-61	2.3.2 Inverse Rotation2-1
1.31.4	Parametric (Analytical) Solid Modeling1-62	2.3.3 Inverse Scaling2-1
1.31.5	Primitive Instancing 1-63	2.3.4 Inverse Reflection2-1
1.31.6	Feature Based Modeling1-63	2.4 Three-Dimensional Geometric
1.32.7	Constraint Based Modeling 1-67	Transformations2-4
1.31.8	Comparison of Constructive Solid Geometry	2.4.1 Translation2-4
1.31.8	(C-Rep) Approach and Boundary	2.4.2 Rotation2-4
	Representation (B-Rep) Approach1-68	2.4.3 Scaling2-4

$\overline{}$

2.4.4	Reflection2-43	3.4.4	Applications of Cone Beam CT3-4
2.5	Coordinate Systems2-45	3.5	Magnetic Resonance Imaging (MRI)3-4
2.6	Mapping of Geometric Models2-4	3.5.1	Principle of Operation of MRI3-4
2.6.1	Comparison between Geometric	3.5.2	Applications of MRI3-5
	Transformation and Geometric Mapping2-47	3.5.3	Comparision Between MRI and CT3-5
2.7	Two-Dimensional Geometric Mappings2-47	3.6	Non-Contact Surface Scanning3-6
2.7.1	Geometric Mapping of Graphics Element2-47	3.7	Medical Scan Data3-6
2.7.2	Translational Mapping2-47	3.8	Point Cloud Data3-6
2.7.3	Rotational Mapping2-48	3.9	Pixel Data Operations3-6
2.7.4	General Mapping2-48	3.10	Procedure of Using CT Data
	Module 3		A Worked Example3-7
Chap	oter 3 : Modeling Based on Biomedical Data	3.11	Point Cloud Data Operations3-8
	3-1 to 3-11	3.12	Two-Dimensional Formats3-8
3.1	Introduction to medical imaging : Computed	3.13	Pseudo 3D Formats3-9
	tomography (CT), Cone beam CT (CBCT), Magnetic	3.14	True 3D Formats3-9
	resonance (MR), Noncontact surface scanning,	3.15	File Management and Exchange3-9
	Medical scan data , Point cloud data	3.15.1	STL Format
3.2	Working with medical scan data: Pixel data operations, Using CT data: a worked example, Point	3.15.2	Object Format3-11
	cloud data operations, Two-dimensional formats,	3.15.3	Virtual Reality Modelling Language
	Pseudo 3D formats, True 3D formats, File		(VRML) Format3-11
	management and exchange	3.15.4	X3D Format3-11
3.1	Medical Modeling (Bio-Modelling)3-2	3.16	Standards for Exchange of Model Data3-11
3.2	Introduction to Medical Imaging3-2		Module 4
3.2.1	Medical Scanning Process3-2	Chapte	r 4: Subtractive Manufacturing 4-1 to 4-116
3.2.2	Types of Medical Scanners3-2	4.1 1	ntroduction: NC/CNC/DNC machines, Machining
3.3	Computed Tomography (CT)3-3		enters, Coordinate system
3.3.1	Principle of Operation of	4.2 C	NC machining practices and programming :
	Computed Tomography (CT)3-3		etup and operation of two- and three- axis CNC
3.3.2	Hounsfield Scale3-3		nachines programming using manual part
3.3.3	Applications of CT Scan3-4	p	rogramming method, Canned Cycles.
3.4	Cone Beam CT (CBCT)3-4	4.1	NC Machine Tools4-2
3.4.1	Working principle of Cone Beam CT3-4	4.1.1	Elements of NC Machine Tool System4-2
3.4.2	Advantages of Cone Beam CT (CBCT)3-4	4.2	Classification of NC (Numerical Control)
3.4.3	Limitations of Cone Beam CT (CBCT)3-4		Machine Tool Systems4-3
		4.2.1	According to Control Loop Feedback Systems 4-4

4.2.2	According to Type of Tool Motion Control4-4	4.13.2	Types of Adaptive Control (AC) Systems4-25
4.2.3	According to Programming Methods4-6	4.14	Machining Centers4-26
4.3	Advantages of NC Machine Tools4-8	4.15	Introduction to Part Programming4-27
4.4	Limitations of NC Machine Tools4-9	4.15.1	Steps in Part Programming4-27
4.5	Applications of NC Machine Tools4-9	4.16	Coordinate Systems Used in Manual Part Programming4-28
4.6	CNC Machine Tools4-9	4.17	Format of Manual Part Programming4-28
4.6.1	Elements of CNC Machine Tool System 4-10	4.17.1	Types of Formats of Block in
4.7	Classification of CNC (Computer Numerical Control) Machine Tool Systems4-10		Manual Part Programming4-29
4.7.1	According to Control Loop Feedback Systems 4-11	4.18	Manual Part Programming for Turning Applications Turning Center4-30
4.7.2	According to Type of Tool Motion Control4-12	4.18.1	Coordinate System (Axes Designation
4.7.3	According to Programming Methods4-14		Conventions) Used in Turning Center4-30
4.7.4	According to Type of Controllers4-15	4.18.2	Zero Points and Reference Points4-31
4.7.5	According to Axis and Type of Operations4-16	4.18.3	Cutting Process Parameter Selection
4.8	Advantages (Features) of		for Turning Applications4-32
	CNC Machine Tools4-16	4.18.4	G-Codes (Preparatory Functions) Used in Turning Center4-33
4.9	Limitations of CNC Machine Tools 4-17	4.18.5	M Codes (Miscellaneous Functions)
4.10	Applications of CNC Machine Tools4-17	1110.0	Used in Turning Center4-40
4.11 4.11.1	Systems of NC/CNC Machine Tools	4.18.6	Programming Types used in
4.11.2	Spindle and Feed Drives4-19		Turning Applications4-41
4.11.3	Actuator Support Bearings4-19	4.18.7	Subprogram (Subroutines)4-42
4.11.4	Feedback Systems4-20	4.18.8	Macros4-42
4.11.5	Automatic Tool Changers4-20	4.18.9	Canned Cycles4-42
4.11.6	Tooling	4.18.10	General Structure of Turning Part Program4-44
4.11.7	Material Handling Systems4-21	4.19	Manual Part Programming for Milling Applications Machining Center4-69
4.11.8	Pallet Changer Systems4-22	4.19.1	Coordinate System (Axis Designation
4.11.9	Lubrication System 4-23		Conventions used) in CNC Machining Center4-70
4.11.10	Coolant System4-23	4.19.2	Zero Points and Reference Points4-70
4.12	DNC Machine Tools 4-23	4.19.3	Cutting Process Parameter Selection for Milling Applications4-71
4.12.1	Basic Elements of DNC Machine Tool System 4-24	4 10 4	5
4.12.2	Functions of DNC Machine Tool System4-24	4.19.4	G-Codes (Preparatory Functions) used in Machining Center4-73
4.12.3	Advantages of DNC Machine Tools4-24	4.19.5	M-Codes (Common Miscellaneous Functions)
4.12.4	Limitations of DNC Machine Tools4-25		used in Machining Center4-83
4.13	Adaptive Control (AC) System4-25	4.19.6	General Structure of Milling Part Program4-85
4.13.1	Advantages of Adaptive Control (AC) Systems4-25	4.20	Computer Assisted Part Programming For Milling Applications4-114

36
31

4.20.1	Types of Computer Assisted Programming Languages4-115 Elements of Computer Assisted Programming System 4-116	5.9.4	Comparison between Stereolithography (S. Process, Selective Laser Sintering (SLS) Process and 3D-Printing Process	-
	Programming System4-116	5.10	Applications of Rapid Prototyping	5-22
	Module 5	5.11	Rapid Tooling	5-24
Chapte	er 5: Additive Manufacturing 5-1 to 5-29	5.11.1	Classification of Rapid Tooling	5-24
5.1 F	Rapid Prototyping: Introduction, Classification of	5.12	STL Format	5-24
	RP Processes, Advantages and disadvantages. RP	5.12.1	Advantages of STL File Format	5-25
	Applications; in Design, Concept Models, Form and it checking, Functional testing, CAD data verification,	5.12.2	Disadvantages of STL File Format	5-25
	Rapid Tooling, and bio fabrication.	5.12.3	Problems of STL File Format	5-26
	Working Principle, Application, Advantages and	5.13	4D Rapid Prototyping (4D Printing)	5-26
	lisadvantages : of Stereolithography Apparatus SLA) Selective Laser Sintering (SLS), 3D Printing,	5.14	Areas of Applications of Rapid Prototypi	ing5-28
F	Fused Deposition Modeling (FDM), and Laminated Object Manufacturing (LOM)	5.14.1	Applications of Rapid Prototyping in Desig	;n5-28
		5.14.2	Applications of Rapid Prototyping in	
5.1	Introduction to Rapid Prototyping5-2		Engineering, Analysis and Planning	5-29
5.2	Categories of Manufacturing Processes5-2	5.14.3	Applications of Prototyping in	
5.3	Basic Steps in Rapid Prototyping Process5-2		Tooling (Rapid Tooling)	5-29
5.4	Benefits (Advantages) of Rapid Prototyping 5-5		Module 6	
5.4.1	Direct Benefits of Rapid Prototyping5-5	Chapte	er 6: Virtual Manufacturing	6-1 to 6-4
5.4.2	Indirect Benefits of Rapid Prototyping5-6			
5.5	Limitations of Rapid Prototyping5-6		/irtual Manufacturing : Introduction, Scope economic Aspects and Future Trends	e, Socio-
5.6	Classification Of Rapid Prototyping Systems (Techniques)5-6	6.1	Augmented Reality and Virtual Reality	6-2
5.6.1	Liquid-Based Rapid Prototyping Systems5-6	6.1.1	Augmented Reality (AR)	6-2
5.6.2	Solid-Based Rapid Prototyping Systems5-7	6.1.2	Virtual Reality (VR)	6-2

	Systems (Techniques)5-6	0.1	Augmented Reality and Virtual Reality 0-2
5.6.1	Liquid-Based Rapid Prototyping Systems5-6	6.1.1	Augmented Reality (AR)6-2
5.6.2	Solid-Based Rapid Prototyping Systems5-7	6.1.2	Virtual Reality (VR)6-2
5.6.3	Powder-Based Rapid Prototyping Systems5-7	6.1.3	Difference between Augmented Reality and Virtual Reality
5.7	Liquid Based Rapid Prototyping Systems5-7	6.2	Virtual Manufacturing (VM)6-2
5.7.1	Stereolithography (SLA) Process5-7	6.3	Scope of Virtual Manufacturing
5.8	Solid Based Rapid Prototyping Systems5-9	6.3.1	Classification of Virtual Manufacturing
5.8.1	Fused Deposition Modelling (FDM)5-10		(VM) Systems6-3
5.8.2	Laminated Object Manufacturing (LOM)5-12	6.3.2	Scope and Domains of Virtual
5.9	Powder Based Rapid Prototyping Systems 5-14		Manufacturing Systems6-3
5.9.1	Selective Laser Sintering (SLS)5-15	6.4	Benefits of Virtual Manufacturing 6-4
5.9.2	Three Dimensional (3D) Printing5-18	6.5	Socio-Economic Aspects of Virtual Manufacturing Systems
5.9.3	Laser Powder Forming (LPF)5-20		Plantilacturing Systems

